The Receptors for Mammalian Sweet and Umami Taste

نویسندگان

  • Grace Q. Zhao
  • Yifeng Zhang
  • Mark A. Hoon
  • Jayaram Chandrashekar
  • Isolde Erlenbach
  • Nicholas J.P. Ryba
  • Charles S. Zuker
چکیده

Sweet and umami (the taste of monosodium glutamate) are the main attractive taste modalities in humans. T1Rs are candidate mammalian taste receptors that combine to assemble two heteromeric G-protein-coupled receptor complexes: T1R1+3, an umami sensor, and T1R2+3, a sweet receptor. We now report the behavioral and physiological characterization of T1R1, T1R2, and T1R3 knockout mice. We demonstrate that sweet and umami taste are strictly dependent on T1R-receptors, and show that selective elimination of T1R-subunits differentially abolishes detection and perception of these two taste modalities. To examine the basis of sweet tastant recognition and coding, we engineered animals expressing either the human T1R2-receptor (hT1R2), or a modified opioid-receptor (RASSL) in sweet cells. Expression of hT1R2 in mice generates animals with humanized sweet taste preferences, while expression of RASSL drives strong attraction to a synthetic opiate, demonstrating that sweet cells trigger dedicated behavioral outputs, but their tastant selectivity is determined by the nature of the receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic tracing shows segregation of taste neuronal circuitries for bitter and sweet.

The recent discovery of mammalian bitter, sweet, and umami taste receptors indicates how the different taste qualities are encoded at the periphery. However, taste representations in the brain remain elusive. We used a genetic approach to visualize the neuronal circuitries of bitter and sweet tastes in mice to gain insight into how taste recognition is accomplished in the brain. By selectively ...

متن کامل

Different functional roles of T1R subunits in the heteromeric taste receptors.

The T1R receptors, a family of taste-specific class C G protein-coupled receptors, mediate mammalian sweet and umami tastes. The structure-function relationships of T1R receptors remain largely unknown. In this study, we demonstrate the different functional roles of T1R extracellular and transmembrane domains in ligand recognition and G protein coupling. Similar to other family C G protein-coup...

متن کامل

T1R receptors mediate mammalian sweet and umami taste.

The T1R family of taste receptors mediates 2 taste qualities: T1R2/T1R3 for sweet taste and T1R1/T1R3 for umami taste. Functional expression in heterologous system and gene knockout studies has shown their functions as taste receptors. Structure-function relation studies on T1R2/T1R3 showed multiple ligand binding sites on both subunits. The umami taste of l-glutamate can be drastically enhance...

متن کامل

Breadth of tuning and taste coding in mammalian taste buds.

A longstanding question in taste research concerns taste coding and, in particular, how broadly are individual taste bud cells tuned to taste qualities (sweet, bitter, umami, salty, and sour). Taste bud cells express G-protein-coupled receptors for sweet, bitter, or umami tastes but not in combination. However, responses to multiple taste qualities have been recorded in individual taste cells. ...

متن کامل

Human receptors for sweet and umami taste.

The three members of the T1R class of taste-specific G protein-coupled receptors have been hypothesized to function in combination as heterodimeric sweet taste receptors. Here we show that human T1R2/T1R3 recognizes diverse natural and synthetic sweeteners. In contrast, human T1R1/T1R3 responds to the umami taste stimulus l-glutamate, and this response is enhanced by 5'-ribonucleotides, a hallm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2003